

Engineering and Physical Sciences Research Council

Bayesian Adversarial Spheres

Artur Bekasov, Iain Murray

{artur.bekasov, i.murray}@ed.ac.uk

THE UNIVERSITY of EDINBURGH

Problem: Adversarial Examples

DATASCIENCE

"panda" 57.7% confidence

adversarial perturbation

"gibbon" 99.3% confidence

Hierarchical modelling

- Exploit symmetries using a hyper-prior on the mean: $w_i \sim N(\mu, \sigma_w^2); \quad \mu \sim N(0, \sigma_\mu^2)$
- More expressive variational family using a hyper-prior on log-variance: $w_i \sim N(0, e^v); \quad v \sim N(0, \sigma_v^2)$
- Hierarchical priors are useful for NN models as well (Neal, 1994). How to choose them for real, complex problems?

- Visually imperceptible changes in the image result in **confidently** incorrect predictions
- In practical decision making, a model should at least detect such changes and **become more uncertain** in its prediction

BNNs for detecting adv. examples

- It is difficult to cover a high-dimensional manifold with data. Regions exist where different reasonable fits make different predictions
- Capturing weight (*epistemic*) uncertainty \Rightarrow better calibrated output uncertainty \Rightarrow adversarial example detection
- Bayesian neural networks (BNNs) have been explored (Rawat et al. 2017; Bradshaw et al., 2017; Gal and Smith, 2018), but accurate posterior inference is difficult
- Can we demonstrate the effect in a simpler setting, where inference is easier?

Results

Model	Confidence \uparrow A	dv. err. ↓ Resa	ampled err. \downarrow
MAP	1.000	0.999	
Laplace	0.501	0.499	
Bootstrap	1.000	0.961	0.957
MCMC	0.976	0.558	0.205
SVI (MC)	0.991	0.606	0.516
Hier. SVI (MC)	0.978	0.678	0.561
MCMC ($\mu \neq 0$)	1.000	0.341	0.301

• **Confidence:** average prob. assigned to the *correct* label on val. set

- Adv. error: prob. assigned to the *wrong* label *in the worst case*
- **Resampled error:** adv. error of a *new* ensemble on the same points

Discussion

Setup: Adversarial Spheres

• Setup introduced by Gilmer et al. (2018)

• A **binary classification** task using a synthetic dataset:

$$m{x}^{(i)} = R rac{z}{\|z\|_2}$$
 $R = egin{cases} 1, & ext{if } y^{(i)} = 0 \ 1.3, & ext{if } y^{(i)} = 1 \end{cases}$ $z \sim N(0, 1)$

- 1. Adv. examples present in a linear model. Regularization not helpful
- 2. Accurate Bayesian method (MCMC) makes the model uncertain for adversarial examples, while remaining confident on validation samples
- **3.** Bootstrap uncertainty is insufficient in this setup
- 4. MCMC results are improved by using a hierarchical prior that exploits symmetry in the data
- **5.** Cheaper, less accurate Bayesian method (SVI) is sufficient for detecting adversarial examples in this setting

Variational posterior

• In a high-dimensional setting, Projected Gradient Descent finds adversarial examples on the manifold (the sphere surfaces), even for models with a **perfect validation score**

Model: Bayesian logistic regression

• **Logistic regression** with squared features:

 $p(y = 1 | \mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^T \phi(\mathbf{x})); \quad \phi(\mathbf{x}) = [x_1^2 \dots x_D^2]$

• Represents axis-aligned ellipsoidal decision boundaries in D dimensions

• Inference still intractable, but **approx. inference is more accurate**

• Variational posterior results in a good predictive distribution, while not matching the true posterior very well

• Can use a hierarchical model to try to improve the fit, **but it doesn't** necessarily lead to a better predictive distribution