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Problem: Adversarial Examples
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• Visually imperceptible changes in the image result in confidently
incorrect predictions

• In practical decision making, a model should at least detect such
changes and become more uncertain in its prediction

BNNs for detecting adv. examples

• It is difficult to cover a high-dimensional manifold with data. Regions
exist where different reasonable fits make different predictions

• Capturing weight (epistemic) uncertainty ⇒ better calibrated output
uncertainty ⇒ adversarial example detection

• Bayesian neural networks (BNNs) have been explored (Rawat et al.
2017; Bradshaw et al., 2017; Gal and Smith, 2018), but accurate
posterior inference is difficult

• Can we demonstrate the effect in a simpler setting, where
inference is easier?

Setup: Adversarial Spheres

• Setup introduced by Gilmer et al. (2018)
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• A binary classification task using a synthetic dataset:

x (i) = R
z
‖z‖2

R =

{
1, if y (i) = 0

1.3, if y (i) = 1
z ∼ N(0, I)

• In a high-dimensional setting, Projected Gradient Descent finds
adversarial examples on the manifold (the sphere surfaces), even for
models with a perfect validation score

Model: Bayesian logistic regression

• Logistic regression with squared features:

p (y = 1|x ,w ) = σ
(
wTφ(x)

)
; φ(x) =

[
x2

1 . . . x2
D

]
• Represents axis-aligned ellipsoidal decision boundaries in D dimensions

• Inference still intractable, but approx. inference is more accurate

Hierarchical modelling

• Exploit symmetries using a hyper-prior on the mean:

wi ∼ N(µ, σ2
w); µ ∼ N(0, σ2

µ)

• More expressive variational family using a hyper-prior on log-variance:

wi ∼ N(0, ev); v ∼ N(0, σ2
v)

• Hierarchical priors are useful for NN models as well (Neal, 1994). How
to choose them for real, complex problems?

Results

Model Confidence ↑ Adv. err. ↓ Resampled err. ↓
MAP 1.000 0.999 –
Laplace 0.501 0.499 –
Bootstrap 1.000 0.961 0.957

MCMC 0.976 0.558 0.205
SVI (MC) 0.991 0.606 0.516

Hier. SVI (MC) 0.978 0.678 0.561

MCMC (µ 6= 0) 1.000 0.341 0.301

• Confidence: average prob. assigned to the correct label on val. set

• Adv. error: prob. assigned to the wrong label in the worst case

• Resampled error: adv. error of a new ensemble on the same points

Discussion

1. Adv. examples present in a linear model. Regularization not helpful

2. Accurate Bayesian method (MCMC) makes the model
uncertain for adversarial examples, while remaining confident on
validation samples

3. Bootstrap uncertainty is insufficient in this setup

4. MCMC results are improved by using a hierarchical prior that exploits
symmetry in the data

5. Cheaper, less accurate Bayesian method (SVI) is sufficient for
detecting adversarial examples in this setting

Variational posterior
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• Variational posterior results in a good predictive distribution, while
not matching the true posterior very well

• Can use a hierarchical model to try to improve the fit, but it doesn’t
necessarily lead to a better predictive distribution


